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Abstract

One major issue in the accurate solution of convection-dominated problems

by means of high-order methods is the ability of the solver to maintain

monotonicity. This problem is critical for spectral elements, where Gibbs

oscillations may pollute the solution. However, typical filter-based stabi-

lization techniques used with spectral elements are not monotone. In this

paper, residual-based stabilization methods originally derived for finite ele-

ments are constructed and applied to high-order spectral elements. In par-

ticular, we show that the use of the Variational Multiscale (VMS) method

greatly improves the solution of the transport-diffusion equation by reduc-

ing over- and under-shoots, and can be therefore considered an alternative

to filter-based schemes. We also combine these methods with discontinuity

capturing schemes (DC) to suppress oscillations that may occur in proximity

of boundaries or internal layers. Additional improvement in the solution is

also obtained when a method that we call FOS (for First-Order Subcells) is
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used in combination with VMS and DC. In the regions where discontinuities

occur, FOS subdivides a spectral element of order p into p2 subcells and then

uses 1st-order basis functions and integration rules on every subcell of the

element. The algorithms are assessed with the solution of classical steady

and transient 1D, 2D, and pseudo-3D problems using spectral elements up

to order 16.
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1. Introduction

A large number of physical applications relies on the accurate solution

of the transport-diffusion equation

∂q

∂t
+ L(q) = f, (1)

where q is the concentration of the tracer, L(q) = u · ∇q − ∇ · (ν∇q), ν > 0

is a diffusion coefficient, u is a known velocity field, and f is a constant

source term. The solution of (1) should respect two significant properties:

(i) positivity must be preserved, and (ii) smearing at internal and bound-

ary layers should not be excessive. These properties are extremely impor-

tant in the context of transport in the atmosphere. Both limited-area and

global atmospheric models for weather prediction need monotonic advection

of tracers and moisture variables, otherwise the wrong amount of precipita-

tion would be forecasted. Simple microphysics schemes, such as the Kessler

parametrization [1], require three variables (water vapor, cloud water, and

rain), whereas more sophisticated parameterizations include additional vari-

ables such as ice and snow [2]. Similarly, climate models require transport of

hundreds of tracers, each representing a different chemical species. Regard-

less of the physical scales of the model, tracers must remain positive since

the physical parameterizations that govern sub-grid scale processes such

as auto-conversion and sedimentation, implicitly assume such a condition.

These issues have been addressed for both transient and stationary prob-

lems (See, e.g., [3]) and, in the context of finite element methods, so-called

stabilized methods have been an active topic of research since their intro-

duction in the early 1980s with the Streamline-Upwind method of Hughes
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and Brooks [4]. In this paper we address the problem of solving (1) by

high-order spectral element methods (SEM) without losing the ability to

approach a monotone solution of the problem. Higher-order accuracy, in

fact, comes at the price of aliasing phenomena in the solution [5], but the

anti-aliasing filters typically used to give a stable spectral element solution

do not respect conditions (i) and (ii) described above. Therefore, to achieve

monotonic results with high-order spectral elements, we consider stabiliza-

tion schemes originally devised for finite elements, and focus on techniques

that can be derived directly from subgrid scale considerations as originally

defined in [6] and [7] in the context of variational multiscale methods. These

schemes assure stability by designing a diffusion-type term that is added to

the Galerkin formulation of the original problem.

The first stabilized schemes based on the addition of a diffusive stabi-

lization term to the Galerkin equation are the Artificial Viscosity methods

(AV) [8] and the Streamline-Upwind method (SU) [4]. AV, as Hyper-viscosity

(HV), is often used in atmospheric and ocean modeling due to the property

of preserving the correct energy cascade in simulations that involve turbu-

lence. The SU scheme uses the information in the direction of the flow to

add viscosity only in the streamline direction. Both methods use a constant

diffusion coefficient that does not typically change from element to element.

A major improvement came by introducing the residual of the governing

equation in the definition of the stabilization term. When the computed

solution approaches the exact solution, the stabilization term should van-

ish. This strategy is known as residual weighting and generates a family of

stabilization methods used mostly in FEM-based Computational Fluid Dy-

namics (CFD). These schemes, which are consistent in that the stabilization

terms goes to zero as the numerical solution approaches the exact solution,
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are considered in this paper. The most commonly used are the Upwind-

Streamline/Petrov-Galerkin (SUPG) and the Galerkin/Least-Squares (GLS),

devised in 1982 [9] and 1989 [10], respectively, as a consistent counterpart

to SU. GLS was designed as a generalization of SUPG, but in the limit

of pure advection, or for piece-wise linear elements, the GLS and SUPG

methods are equivalent. Stability analysis for these two methods is detailed

in [11, 12, 10]. The Gradient Galerkin/Least-Squares [13] for advection-

diffusion with a reaction term, or the Unusual Stabilized Finite Element

Method (USFEM) [14, 15] are a few examples. In the framework of high or-

der methods, Petrov-Galerkin stabilization was applied by Pasquarelli and

Quarteroni [16] to stabilize the convection-diffusion equation with the spec-

tral method. Canuto used bubble functions to address the same issue [17]

(See also [18, 19]).

The analyses of Hughes [6], Hughes and Stewart [20], and Hughes et al.

[7] form the unifying theory of all stabilized finite element methods. Accord-

ing to this theory, stabilized methods are subgrid scale models where the un-

resolved scales are intimately related to the instabilities at the level of the re-

solved scales, and thus should be used in the construction of the stabilization

term. These schemes are known as Variational Multiscale (VMS) methods.

Details are given in subsection 2.2.2. VMS methods are all residual-based

methods that improve the stability properties of the solution, and preserve

the accuracy of the underlying numerical scheme [21]. However, Godunov’s

theorem [22] implies that the latter property may be violated in the prox-

imity of discontinuities or strong gradients. To the authors’ knowledge, the

only application of VMS to spectral elements is the work of Wasberg et al.

[23] in the context of large eddy simulation.

Neither SUPG, GLS, nor VMS, however, preclude the formation of over- and
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under-shoots in the proximity of sharp gradients of the solution. For this

reason, discontinuity capturing (DC) techniques, also referred to as Spurious

Oscillations at Layers Diminishing (SOLD) methods are used in combina-

tion with SUPG and VMS to introduce an additional term to the stabilized

form of the equation. This issue was treated for the first time in [24], where

details on how to build the stabilization parameter are also given, and in [25]

for non-linear problems. A detailed review of most existing SOLD schemes

can be found in a two-part paper by John and Knobloch [26, 27], where a

modification of the discontinuity-capturing of Codina [28] is presented and is

shown to be a promising option for FE solutions characterized by boundary

layers.

All these methods strongly depend on a parameter that will be iden-

tified by τ throughout the paper. It will be also referred to as intrinsic

time. A classical result for τ was obtained by Franca, Frey and Hughes in

[29] by error analysis. Their result was reproduced by other authors using

different approaches. Additional expressions for τ were found by Codina in

[30, 31], by Codina, Oñate and Cervera in [32], by Harari and Hughes in

[13], and by Shakib, Hughes and Johan in [33], who based the derivation

on the (discrete) maximum principle. Another expression is due to Franca

and Valentin [15] who based their derivation on convergence and stability

analysis. Starting with the formalization of VMS methods by Hughes [6], τ

has often been derived using Green’s functions, a thorough analysis of which

is done by Hughes and Sangalli in [34]. Recently, Houzeaux, Eguzkitza and

Vázquez [35] proposed a new way to derive the approximate subgrid scale

solution, with results that are comparable to those of Hauke and García-

Olivares in [36]. In [37], Codina builds τ using the Fourier analysis of the
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problem; however, determining τ remains open. For this reason, we propose

τ for higher-order spectral elements and use it to construct an appropriate

stabilization method. To further improve the solution, we combine VMS

and DC with a method that we here call FOS (for First-Order Subcells).

This technique subdivides a tensor product spectral element of order p and

dimension d into pd subcells, and then uses 1st-order basis functions and

integration rules on every subcell of the element.

1.1. Main contribution of this paper

The main problem that we want to solve with the work presented here

is that of stabilizing the spectral element solution of the advection-diffusion

equation by sub-grid scale stabilization techniques (namely, VMS), and im-

prove the solution by reducing the under- and overshoots that would occur

if classical filters were to be used. The definition and implementation of

τ in VMS stabilization may greatly affect the result. We hence adapted

the method described in [35] to compute τ , and applied it to spectral ele-

ments that use Legendre-Gauss-Lobatto (LGL) nodes, and show that this

technique can be used in problems where spectral element filters fail. We

finally apply FOS (i.e., we lower the order of interpolation by keeping the

computational grid untouched) only where the solution is characterized by

a propagating discontinuity. The combination of VMS, shock capturing and

FOS methods will be shown to be an encouraging direction to take for con-

structing high-order positive-definite spectral element methods. To assess

the algorithm, steady and transient advection-diffusion problems are solved

on one- and two-dimensional domains using spectral elements up to order

16. We compare the performance of the method using VMS against those

obtained with previous classical spectral element schemes.
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1.2. Outline of this paper

The remainder of the paper is organized as follows. After this introduc-

tion, the numerical method and the corresponding stabilization are derived

in Section 2. Mass conservation properties are reported in Section 3. Tests

to verify the algorithm and a discussion of the results are presented in Sec-

tions 4 and 5, respectively.

2. Numerical methods

Given the space L2 of real-valued functions that are square integrable

in a bounded domain Ω ⊂ R
2 with boundary ∂Ω, the Sobolev space H1 of

weakly-differentiable functions will be used. Specifically, W ⊆ H1 represents

the space of trial and basis functions of the Galerkin formulation to follow.

In L2 the inner product is given by (·, ·), and the 2-norm associated with

the space is denoted by ‖ · ‖2. For simplicity, we add the property that

the solution q vanishes on ∂Ω; under this assumption, W ⊆ H1
0 . Given a

finite element partition Ωh =
⋃nel

i=1Ki of the computational domain Ω into

nel high-order conforming quadrilaterals Ki of characteristic length h, W h

is the finite dimensional projection of W. The discrete weak form reduces to

the problem of finding the function qh ∈ (W h; 0, t) such that

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) = (ψh, f) ∀ψh ∈ W h (2)

where a(·, ·) is a bilinear form that satisfies

a(ψ, q) = (ψ,L(q)).
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After integrating by parts and assuming homogeneous Dirichlet boundary

conditions, we have that

(

ψh,
∂qh

∂t

)

.=
∫

Ωh
ψh∂q

h

∂t
dΩh,

a(ψh, qh) .=
∫

Ωh
ψhu · ∇qh dΩh +

∫

Ωh
ν∇ψh · ∇qh dΩh,

(ψh, f) .=
∫

Ωh
ψh f dΩh = 0.

Remark 1: If advection dominates diffusion, unless h is sufficiently

small or the exact solution is globally smooth, the Galerkin approxima-

tion expressed by (2) is such that qh will suffer from severe/unacceptable

oscillations [11, 38]. Furthermore, if the discretization relies on high-order

methods, Gibbs oscillations may occur regardless of the size of the grid. Dif-

ferent ways to improve stability will be described in the following sections.

2.1. The spectral element method

Problem (2) is solved on a grid of quadrilateral elements of order p, where

the element-wise solution qh is approximated by the expansion
∑Np

k=1 ψk(x) qh
k (t)

on Np = (p + 1)2 collocation points within the element. The expansion
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functions ψk are constructed as the tensor product from the Lagrange poly-

nomials hi(ξ(x)) and hj(η(x)) of order p as:

ψk(x) = hi(ξ(x)) ⊗ hj(η(x)), ∀ i, j = 1, ..., p+ 1. (4)

hi(ξ(x)) and hj(η(x)) are the polynomials associated with the LGL points

ξi and ηj , respectively. The LGL points are the zeros of

(1 − ξ2)P
′

N (ξ) = 0

where P ′
N is the derivative of the N th-order Legendre polynomial. Quadra-

ture is performed on the reference element Ω̂h = [−1, 1]2 with LGL points

that have quadrature weights ω. Substitution of
∑Np

k=1 ψk(x) qh
k (t) into the

weak form (2) yields the semi-discrete (in space) matrix problem

M
∂qh

∂t
+ Aqh + Dqh = 0 (5)

where qh is the array of the unknowns on the grid points, and M, A, and D

are the global mass, advection, and diffusion matrices, respectively. These

matrices are obtained from the direct stiffness summation (DSS) of the ele-

mental matrices Mel, Ael, and Del given by:

Mel
kl =

∫

Ωel
ψkψl dΩel (6a)

Ael
kl =

∫

Ωel
u · ∇ψk ψl dΩel (6b)

Del
kl =

∫

Ωel
ν∇ψk · ∇ψl dΩel. (6c)
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By construction, the mass matrix M is diagonal (assuming inexact integra-

tion) and invertible. This makes these methods particularly well suited for

explicit time integration schemes.

All the integrals defined above are approximated by the quadrature for-

mula

∫

Ωh
el

(·)dx =
∫ 1

−1

∫ 1

−1
(̂·)|J(ξ, η)|dξ dη ≈

p+1
∑

i=1

p+1
∑

j=1

(̂·)|J(ξ, η)|ωiωj , (7)

where J is the Jacobian matrix associated with the map between the physical

element Ωh(x, y) and the reference element Ω̂h(ξ, η). The integration is exact

up to polynomials of order 2p-1. The p+1 LGL points lie along the edges

and in the interior of the elements. For more on SEM see, e.g., [39, 40].

Integration in time of (5) is performed with an appropriate strong-

stability preserving (SSP) time integrator. In particular, we use a five-stage

explicit third-order Runge-Kutta method (RK35) [41]. SSP methods avoid

the production of additional oscillations or damping.

From 3rd-order and up, the disposition of the nodes of spectral elements

differs from classical finite elements in the way represented in Figure 1 for

a 4th-order element.
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Figure 1: Nodes disposition for 4th-order FE (left), and SE (right).

2.2. Stabilization techniques

Aliasing and Gibbs oscillations render the Galerkin solution of (1) un-

stable since unwanted oscillations will pollute the numerical solution. In

the framework of spectral elements, the common strategy to control these

oscillations is the use of anti-aliasing filters (See, e.g., [42, 43, 44, 40, 45]

and references therein). Filtering, however, suffers from non-positivity that

is unacceptable in most problems that involve transport. A suitable alterna-

tive to filters may be the use of a stabilized spectral element approximation

based on a residual-based diffusion-like term added to the left hand-side

(LHS) of (2). A stabilization technique should have the important property

of consistency (for instance, artificial diffusion stabilizes but is not necessar-

ily consistent). Thus, the additional viscous term should vanish as the size

of the element approaches zero. The stabilized counterpart of (2) is:

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) + b(ψh, qh) = (ψh, f) ∀ψh ∈ W h, (8)

where b(ψh, qh) is the stabilization term. Different possible definitions of

b(ψh, qh) are reported in Table 1.
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Table 1: Stabilized methods

Method b(ψh, qh) L(ψh)

AV/HV
∫

Ω′
L(ψh)ν̄

[
∇

αqh
]
dΩ′

L = ∇
αψh

SU
∫

Ω′
L(ψh)ν̄

[
u · ∇qh

]
dΩ′

L = u · ∇ψh

SUPG
∫

Ω′
L(ψh)τ

[
∂tq

h + u · ∇qh
− ∇ · (ν∇qh) − f

]
dΩ′

L = u · ∇ψh

GLS
∫

Ω′
L(ψh)τ

[
∂tq

h + u · ∇qh
− ∇ · (ν∇qh) − f

]
dΩ′

L = u · ∇ψh
− ν∆ψh

VMS -
∫

Ω′
L

∗(ψh)τ
[
∂tq

h + u · ∇qh
− ∇ · (ν∇qh) − f

]
dΩ′

L
∗ = −u · ∇ψh

− ν∆ψh

In Table 1 and whenever they are found below, the integrals on Ω′ are

defined by

∫

Ω′

(·) dΩ′ .=
∑

el

∫

Ωel

(·) dΩel, (9)

where Ω′ is the union of the element interiors only.

In the case of AV/HV and SU, b(ψh, qh) is a function of a constant

diffusivity coefficient, ν̄, and α = β/2, where β is a positive even power of

the hyper-viscosity operator (β = 2 yields the usual AV). Although HV is

scale-selective (i.e., it damps only higher frequencies), it is not consistent,

nor is it physical. In fact, to maintain the correct physical dimensions of

the hyper-viscous operator, the value of ν̄ must be different when different

α are used. Its selection is hence not trivial. Furthermore, as Figure 21-d

indicates, the diffusion is isotropic and spatially homogeneous. The operator

does not incorporate the problem’s physics. On the other hand, in the case of
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SUPG, GLS, and VMS, b(ψh, qh) depends on what is referred to as intrinsic

time, τ (see Table 1). τ is not constant or uniform; it depends on the

characteristics of the grid and of the physics of the problem (e.g., velocity,

diffusion). Its definition has major influence on the accuracy of the solution.

A general method for finding τ does not exist yet. The literature on the

optimal selection of τ is vast, and we refer to [26, 27] for a comprehensive

analysis of different definitions. Subsection 2.3 and Appendix A show how

we build τ for high order spectral elements. The method of Douglas and

Wang (DW) [46] was omitted from Table 1 as it can be included into the

VMS method, although its derivation was specifically done in the context

of Stokes problems rather than scalar advection-diffusion. SUPG and VMS

will be described in the following subsections.

2.2.1. Streamline-upwind/Petrov-Galerkin (SUPG)

The SUPG method was designed by Brooks and Hughes [9] and was

later generalized for multidimensional problems by Hughes and Mallet [47].

It is a consistent alternative to the artificial diffusion approach or to the

overly diffusive streamline upwind (SU) method. Its use has been ubiquitous

in the solution of transport problems by the finite element method (See,

e.g., [48, 29, 49, 50, 51]). The application of this strategy to higher-order

schemes was first tested for spectral methods by Canuto and coworkers in

[17, 18, 19, 52], and later by Hughes and coworkers in [21] using non-uniform

rational B-splines (NURBS). In this paper we show its properties when used

with high-order spectral elements. SUPG is a Petrov-Galerkin method in

that it does not assume that the basis and test functions live in the same

space. We introduce the additional space Ψh of test functions wh defined by
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Ψh .=
{

wh : wh = ψh + τu · ∇ψh : ψh ∈ W h
}

.

We have the problem of finding the function qh ∈ (W h; 0, t) such that

(

ψh + τu · ∇ψh,
∂qh

∂t

)

+a(ψh+τu·∇ψh, qh) = (ψh+τu·∇ψh, f) ∀ψh ∈ W h.

(10)

Rearrangement of (10) yields

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) − (ψh, f)

︸ ︷︷ ︸

Galerkin

+b(ψh, qh) = 0 ∀ψh ∈ W h (11)

where

b(ψh, qh) .=
∫

Ω′

[

∂qh

∂t
+ u · ∇qh − ∇ · (ν∇qh) − f

]

τ u · ∇ψh dΩh (12)

is the stabilizing term. In (12), ∂tq
h +u ·∇qh −∇· (ν∇qh)−f is the residual

of the governing equation, and τ is the stabilization parameter whose con-

struction is reported below in the specific context of variational multiscale

stabilization.

2.2.2. The variational subgrid scale formulation (VMS)

Let W h be the space of resolved scales and let W̃ be a space that com-

pletes W h in W and that we will call the space of subgrid scales. VMS
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relies on the decomposition W = W h ⊕ W̃ , where ⊕ is the overlapping sum

decomposition of the two spaces. The elements that belong to W̃ are q̃ and

ψ̃ and are such that q = qh + q̃ and ψ = ψh + ψ̃. Using such decomposition

of q and ψ and anticipating that we will consider q̃ to be quasi-static [37],

we re-write (2) as

(

ψh + ψ̃,
∂qh

∂t

)

+ a(ψh + ψ̃, qh + q̃) = (ψh + ψ̃, f) ∀ψh ∈ W h, ψ̃ ∈ W̃ .

(13)

By virtue of the linear independence of ψh and ψ̃ we can first take ψ̃ = 0

and then ψh = 0 and find the split problem:

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) + a(ψh, q̃) = (ψh, f) ∀ψh ∈ W h (14a)

(

ψ̃,
∂qh

∂t

)

+ a(ψ̃, qh) + a(ψ̃, q̃) = (ψ̃, f) ∀ ψ̃ ∈ W̃ . (14b)

We make the assumptions that ψ̃(∂Ω) = 0 and q̃(∂Ω) = 0, and that

ψ̃(∂Ωel) = 0.

Following [6], in (14) we integrate by parts the bilinear forms that depend

on the subgrid-scales and write the following:

a(ψh, q̃) = (L∗ψh, q̃) ∀ψh ∈ W h and q̃ ∈ W̃

a(ψ̃, qh) = (ψ̃,Lqh) ∀ ψ̃ ∈ W̃ and qh ∈ W h

a(ψ̃, q̃) = (ψ̃,Lq̃) ∀ ψ̃ ∈ W̃ and q̃ ∈ W̃ ,
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where L∗ is the dual (or adjoint) of L. The following system is then found:

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) + (L∗ψh, q̃) = (ψh, f) ∀ψh ∈ W h (15a)

(

ψ̃,
∂qh

∂t

)

+ (ψ̃,Lqh) + (ψ̃,Lq̃) = (ψ̃, f) ∀ ψ̃ ∈ W̃ , (15b)

where

(L∗ψh, q̃) =
∫

Ω′

L∗(ψh)q̃ dΩ′,

(ψ̃,Lqh) =
∫

Ω′

ψ̃L(qh) dΩ′,

(ψ̃,Lq̃) =
∫

Ω′

ψ̃L(q̃) dΩ′.

Observations on time-dependent subgrid-scales: The time-dependent

approximation (13) would include a contribution from the time evolution of

the subscales given by ∂tq̃ if the the hypothesis of quasi-static subscales (i.e.

∂tq̃ ≈ 0) had not be considered. Under this hypothesis, the contribution

from the subgrid scales only appears in the steady part of the Galerkin ap-

proximation. If a sufficiently small time-step is used with an explicit time

integrator, we do not lose accuracy with the quasi-static hypothesis. With

the use of large time-steps with semi-implicit time integrators in atmospheric

simulations, tracking of the subscales is hence needed. This issue is reserved

for future work by the authors.
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Remark 2: It must be pointed out that, for the solution of the scalar

transport equation, the expressions for SUPG and VMS are the same.

Approximation of the sub-grid scales. The unresolved quantity q̃ has not

been defined in any way yet. In the following, the subscales are constructed

by algebraic approximation following the technique described by [35] for lin-

ear, quadratic, and cubic elements. They take W̃ as the space of vanishing

functions on the boundaries of each element. These are called bubble func-

tions (see [53, 54]). By incorporating the time-dependent term of Eq. (15b)

within the second inner product and by re-arranging the terms, the equation

for the subgrid scales q̃,

∫

Ω′

ψ̃L(q̃) dΩ′ = −
∫

Ω′

ψ̃ [L(q) − f ] dΩ′ ∀ψ̃ ∈ W̃ , (17)

is found. The equivalent strong form of (17) is

L(q̃) = −
[

L(qh) − f
]

= −R(qh), (18)

where R(qh) is the residual of the equation for the resolved scale. For the

solution of (18) we first define q̃ as a function of the bubbles b(x); we have

q̃ = −b(x)R(qh) that is plugged into (18) to find the differential problem

L(−b(x)R(qh)) = −R(qh). (19)

Eq. (19) is solved for b with Dirichlet boundary conditions b(x1) = 0 and

b(x2) = 0 on every element of length h = |x1−x2|. By thinking that R(qh) is
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always known from the previous time-step, we can consider it as a constant

and can hence be taken out of the L(·) operator so that L(b(x)) = 1. For

the one-dimensional steady-state advection-diffusion equation1 the problem

is

L(b(x)) .= u bx(x) − ν bxx(x) = 1, (20)

with exact solution

b(x) =
x

u
+
h

u

1 − exu/ν

ehu/ν
. (21)

Now that we computed the bubble functions along the element lenght,

we construct the stabilization parameter τ as the mean value of b(x) along

each element. We have that

τ =
1

|x1 − x2|

∫ x2

x1

b(x) dx. (22)

Integration of b(x) (21) in the interval [x1, x2] = [0, h] yields the following

1The bubbles are computed only once, out of the time loop; only if they depend on non-

constant coefficients, they are computed once per time-step. In either case, the problem

to be solved is not time-dependent.
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definition of τ :

τ =
h

2u

(

coth(Pek) − 1
Pek

)

, (23)

where

Pek =
uh

2ν

is the element Péclet number.

We have derived all the ingredients to define the sub-grid scales q̃ as the

algebraic approximation [6]

q̃ = −τ R(qh). (24)

Eq. (15b) was used as the starting point to approximate q̃. Now, by

plugging (24) into (15a), the VMS stabilized Galerkin method is found and

expressed as follows:

Find qh ∈ W h such that

(

ψh,
∂qh

∂t

)

+ a(ψh, qh) − (f, ψh) −
∫

Ω′

L∗(ψh) τ R(qh)dΩ′ = 0 ∀ψh ∈ W h.

(25)

Eq. (25) differs from Eq. (2) by the additional term that models the subgrid

scales. The extra term is the viscous-like contribution that stabilizes the

equation.
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2.3. τ for spectral elements

For linear elements, h = |x1 − x2| is simply the length of the element.

For higher-order finite elements, h becomes a fraction of the total element

size if the internal nodes are equi-spaced. In the case of spectral elements,

where the LGL points are unevenly distributed, the integral is computed by

using h as the local distance between two consecutive points. The stabiliza-

tion parameter τ is built inside the element as a function of the bubbles on

every segment delimited by two consecutive nodes. This means that equa-

tion L(b(x)) = 1 is solved on every sub-element by applying homogenoeus

Dirichlet b.c. at the sub-element boundaries. For example, for a second-

order element with one internal node we would solve L(b(x)) = 1 on the two

segments [x1, x2] and [x2, x3], respectively, by applying homogeneous b.c. as

b(x1) = 0, b(x2) = 0 and b(x2) = 0, b(x3) = 0. With this, two τ ’s would be

computed as

τ i+1
i =

1
xlgl(i+ 1) − xlgl(i)

∫ xlgl(i+1)

xlgl(i)
b(x) dx, (26)

where xlgl(i + 1) and xlgl(i) are the coordinates of two consecutive LGL

points.

The most simple (but not unique) way of proceeding is that of taking

the average value of all the sub-τ ’s as the value of the full element τ . This

method is used in this paper.

The uneven spacing of the element nodes is the major difference with

respect to the definitions derived in previous studies. In this case the intrin-

sic time is non-uniform along the element, as it appears in Figure 2, where

the bubbles and corresponding τ ’s are displayed for an element of order
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Figure 2: Bubbles b(x) and τ for a 7th-order unitary spectral element. The biggest bubble

in the plot is the bubble that a linear element would have.

7. In Appendix A we report the explicit expression to compute τk along a

high-order spectral element.

2.4. Spurious oscillations at layers diminishing (SOLD) methods

Methods in the form of (25) may produce overshoots and undershoots

in the proximity of an internal or boundary layer. These unwanted oscilla-

tions can be suppressed, without affecting the global solution, by adding an

additional diffusive term of the form

(∇ψh, τ̃∇qh), (27)

where consistency must be respected through a proper construction of τ̃ .

We would like to have a method that does not modify the diffusion in the
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streamline direction since that is already accounted for by the stabilization

term, but also avoids overdamping in the crosswind direction. The compre-

hensive set of tests performed by John and Knobloch reveals that Codina’s

[28] is among the best methods that satisfy these conditions when used with

finite elements. In [28], τ̃ is defined by:

τ̃ =
1
2

max

{

0, C − 2ν
|u|||hk

}

hk
|R(qh)|
||∇qh||

(

I − u ⊗ u

|u|2
)

(28)

where C is a constant, u|| is the velocity component in the streamline direc-

tion, and ⊗ indicates a tensor product. Codina suggests C = 0.7 for linear

and bilinear elements, and C = 0.35 for quadratic and biquadratic elements.

However, for higher order elements using LGL points, we found that the best

results were obtained by setting C = 1, as long as hk is selected properly in

the construction of both τ̃ and τk.

An alternative to (27) comes from Johnson, Schatz, and Wahlbin [55]

who defined the following:

(τ̃u⊥ · ∇ψh,u⊥ · ∇qh) , u⊥ =
(−w, u)

|u| . (29)

In the current work, (29) gives better results than (27), and was then used

throughout. The results obtained with this technique are labeled with DC

for Discontinuity Capturing.

2.5. First-Order Subcells (FOS)

FOS is one additional tool that can further help the suppression of Gibbs

oscillations. The concept is simple and is easily coded on structured grids. If
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a solution has large gradients, the algorithm needs to identify the elements

where the large gradients occur, and project the solution scheme to a 1st-

order space. The gradient is sought with a proper error estimator. The

simple physics of the advection-diffusion problems discussed below allows

for the energy-norm of the gradient of the solution to be a sufficiently good

estimator for the current study. As it is defined in this study, the error

estimator depends on a parameter, ǫ, that may be a function of the numerical

settings (e.g., grid resolution, time step). This point must be considered in

the construction of FOS and in the selection of the error estimator. We did

not explore this further in this study, although it is a very important issue

for the best performance of FOS.

Algorithm 1 is a simple implementation of this concept within our code.

We present the pseudo-code below for the sake of clarity. The method was

applied to a two-dimensional advection-diffusion problem with internal and

boundary layers in a skew velocity field. Results are shown in Figures 9-12

and 14-18. A detail of Figures 18(a,b) is presented in Figure 19.

In the tests that use Algorithm 1, ǫ was set to 0.5.

3. Mass conservation

For problems in geophysical fluid dynamics and, more specifically, in at-

mospheric simulations, mass conservation of tracers is an important ingre-

dient. In this section we address this issue and illustrate how the algorithm

reported in this paper behaves in this respect. Under the suitable hypothesis

of a divergence-free flow, Eq. (1) for the transport of the mixing ratio

q =
ρtracer

ρ
,
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for iel = 1 to nelem do

// Check if the element contains a sufficiently large gradient:

if iel is s.t. ||∇qh||2 > ǫ then

// Treat element iel as a sub-domain made of (ngl − 1) × (ngl − 1)

sub-elements (isubel):

for isubel = 1 to pd do

Create mass and rhs using 1st-order basis functions and

integration rule

end for

else

Create rhs for the high-order spectral element.

end if

end for
Algorithm 1: Compute the 1st-order rhs
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where ρtracer and ρ are, respectively, the densities of the tracer and of the

advecting fluid, is derived from the equation of conservation of mass of the

tracer2

∂ρq

∂t
+ ∇ · (uρq) = 0 (30)

by elimination of ρ from the conservation law (continuity equation)

∂ρ

∂t
+ ∇ · (uρ) = 0. (31)

In (30) and (31) the quantities that are conserved are ρtracer = ρq and ρ,

but not q. In the case of ρ(t) = ρ(t = 0) = constant in a non-divergent flow,

Eq. (1) is equivalent to

∂q

∂t
+ ∇ · (uq) = 0. (32)

This allows the equal treatment of ρq and q in the modeling of the physi-

cal system at hand [56]. Regardless of the poor conservation properties of

transport expressed in advective form, Eq. (1) is of common use within at-

mospheric models (e.g., [1, 56, 57]). In this paper we track mass loss during

the simulations to evaluate the amount of mass loss that we would run into

if using SEM+VMS knowing that no method will conserve for this equation

since it is not in conservation form or a conservation law.

2For simplicity, the diffusion and source terms were dropped.
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For this computation, we use the advection of a square wave in a periodic

channel and report the results in paragraph Tr2-2D below.

4. Numerical testing

The algorithms discussed throughout this paper are tested by using stan-

dard one- and two-dimensional problems. The problems are organized ac-

cording to the nomenclature listed below:

• 1D Steady-state homogeneous advection-diffusion (St-1D)

• 1D Steady-state advection-diffusion with source (St-1D-S)

• 2D Steady-state advection-diffusion with internal and boundary layers

(St-2D).

• 2D Time-dependent advection-diffusion with “L”-shaped discontinuity

(Tr1-2D).

• 2D Time-dependent advection of a sharp tracer in a doubly periodic

channel (Tr2-2D).

• 2D Smooth solid-body rotation - Convergence study (2D Smooth solid-

body rotation).

• Pseudo-3D advection in a neutrally stratified atmospheric flow (Atmo-

3D).

St-1D. One-dimensional steady-state advection-diffusion. The tracer qh is

propagated with constant velocity u = 1ms−1 and diffusivity ν = 1/512m2 s−1

first on two elements of order p = 10 (Figure 3), and then on four elements

of order p = 12 (Figure 4). The domain is the line segment Ω = [−1, 1] with
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Dirichlet boundary conditions qh(−1) = 0 and qh(1) = 1. We compared

the filtered (top row) against the stabilized solution (bottom row) and ob-

serve a decrease of oscillations and undershoots. Also, at higher order and

finer resolution, the capabilities of the filter are clearly being challenged

by the presence of the boundary layer at x = 1. At the same time, small

oscillations near the nodes of the element by the boundary layer are not

completely suppressed by the stabilized method either; hence, additional

localized smoothing is sought.
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−1

−0.5

0

0.5

1

1.5

2

x

q h

(a) Filter. 2 el, p = 10
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(b) VMS. 2 el, p = 10

Figure 3: St-1D: ν = 1/512m2 s−1. The ex-

act solution is dashed. The circles indicate

the grid points.
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(a) Filter. 4 el, p = 12
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(b) VMS. 4 el, p = 12

Figure 4: St-1D: ν = 1/512m2 s−1. The ex-

act solution is dashed. The circles indicate

the grid points.
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St-1D-S. Steady state advection-diffusion with source term f = 1. qh is

propagated with constant velocity u = 1ms−1 and two different diffusivities:

ν = 5×10−3m2 s−1 and ν = 5×10−2m2 s−1. The domain is the line segment

Ω = [0, 1] and homogeneous Dirichlet boundary conditions are imposed.

The domain is subdivided into two elements of order p = 16 and runs are

compared using filtered SE (top row in Figures 5 and 6), and VMS (bottom

row). We observe a very similar behavior of the solution among the two

different cases in the smooth problem (Figure 5). The results are comparable

to the ones obtained by Houzeaux et al. with their τ for quadratic and cubic

elements in [35].
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Figure 5: St-1D-S: ν = 5 × 10−3 m2 s−1. 2

16th-order elements. The exact solution is

dashed. The circles indicate the grid points.
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Figure 6: St-1D-S: ν = 5 × 10−2 m2 s−1. 2

16th-order elements. The exact solution is

dashed. The circles indicate the grid points.

St-2D. Standard steady advection-diffusion skewed to the mesh (e.g., [28]):

a discontinuity is propagated with constant velocity u = (1,−2)ms−1 and

diffusivity ν = 10−8m2 s−1 in the unit square Ω = [0, 1] × [0, 1]. The initial

configuration is shown in Figure 7.
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Figure 7: St-2D: initial configuration of the steady-state problem

Dirichlet boundary conditions are prescribed:

qh =







1 if y = 1,

1 if x = 0 and y ≥ 0.7,

0 otherwise.

In Figures 8-12 we illustrate the run of the same case with different number

of elements and order of the interpolating polynomials. For direct compari-

son of our solution with the ones in the existing literature of finite elements,

we first run the test with linear elements (p = 1), and present the results in

Figure 8. The multiscale solution of this problem (see Figure 8a) shows im-

portant boundary and internal layers that are damped with the discontinu-

ity capturing techniques of Section 2.4. The application of the discontinuity

capturing (DC) scheme greatly improves the solution and yields monotonic-

ity (see Figure 8b). In Figure 9 we maintained the same number of nodes

of the previous run, but increased to 4th the order of interpolation to as-

sess the algorithm in the context of this paper (i.e. 50 elements of order
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4 were used instead of 200 elements of order 1). The similar behavior of

the solution with respect to the 1st-order polynomial run suggests that the

residual-based methods as implemented in this study may not be sensitive to

the distribution of the interpolation nodes within the elements edges. As it

appears in Figures 9c, the behavior is completely analogous to the previous

run. However, monotonicity is lost in two singular nodes: with reference to

Figure 9c, the 4th-order solution is smooth and monotone everywhere except

for the nodes represented as points A and B in Figure 7. This is not surpris-

ing: at A and B the tracer is leaving the boundary with a skew angle; an

incorrect imposition of boundary conditions at these nodes may be causing

the problem. The numerical singularity at this points should be addressed

but it will not be done in the current work. These are fully suppressed by

applying the FOS algorithm described above, as it is shown in Figure 9d.

Decreasing the number of computational nodes by doubling the order

from 4 to 8 and setting the number of elements to 10 in x and z, even with a

discontinuity capturing term, the solution starts to lose monotonicity. This

appears in Figures 11 and 12, where extrema get larger than in the previous

cases. This problem shows that the construction of the stabilizing parameter

τ should include information on the order of the interpolating polynomial.

For a better view of the problem, in Figures 10 and 12 we present a ver-

tical slice of the solution. The boundary layers are evident. Their damping,

however, is clear if VMS, DC, and FOS are applied.
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(a) VMS (b) VMS + DC

Figure 8: St-2D: steady-state solution on 200×200 1st-order elements. (For plotting only,

the data are interpolated to a 50 × 50 node grid using Octave [58]).
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(a) Filter (b) VMS

(c) VMS + DC (d) VMS + DC + FOS

Figure 9: St-2D: steady-state solution on 50×50 4th-order elements.
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Figure 10: St-2D: steady-state solution on 50×50 4th-order elements. Vertical slice at

z = 0.3

35



(a) Filter (b) VMS

(c) VMS + DC (d) VMS + DC + FOS

Figure 11: St-2D: steady-state solution on 10×10 8th-order elements.
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Figure 12: St-2D: steady-state solution on 10×10 8th-order elements. Vertical slice at

z = 0.3

Tr1-2D. Transient advection-diffusion of an L-shaped discontinuity in a flow

where ν = 10−6m2 s−1 and the velocity u of magnitude |u| = 0.5
√

2ms−1

is at 45o with respect to the axis (x, z). The initial configuration is shown

in Figure 13.
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Figure 13: Tr1-2D: initial configuration of the L-shaped problem

The convex shape of the sharp discontinuity makes this problem more

challenging than the previous case [59], and is chosen to analyze robustness

and accuracy of the algorithm. Runs were performed at two different resolu-

tions and two different orders of interpolating polynomials. In particular we

have: approx. 100 points per side using 25×25 4th − order elements (Figure

14), and 12×12 8th-order elements (Figure 15); and approx. 200 points per

side using 50×50 4th-order (Figure 17), and 25×25 8th-order (Figure 17). In

the figures, Filter means that the SEM solution was filtered at every time-

step. VMS and/or DC indicate that the SEM solution is stabilized by the

VMS with or without a discontinuity capturing term (DC). VMS + DC +

FOS indicates the contribution of FOS as well. Positivity is not preserved

in the solution obtained with a filter. The sharp front, in fact, makes the fil-

ter inappropriate. However, similarly to the steady advection-diffusion test

St-2D, the VMS-stabilized solution of this problem is characterized as well

by the formation of internal layers that run along the edges of the tracer in

the direction of the flow (See, e.g., Figure 14b), and VMS is not sufficient to

preserve monotonicity unless it is supplemented by the additional DC term
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defined in (29). This effect is displayed in Figures 14,15,16, and 17.

The consideration made for problem St-2D on the singular peaks that

form at the nodes where the tracer leaves the boundary at an angle, applies

here at nodes A and B of Figure 13. This is visible in Figure 18 obtained

by slicing the tracer along z = 0 in Figures 16 and 17, respectively. The

problem is solved by the application of FOS.

As the order of interpolation is increased from 4th to 8th, the smooth

solution begins to lose positivity. As interpreted for St-2D, the solution is

clearly being affected when the interpolation nodes are densely clustered

towards the boundaries of the elements, as is the case for higher order.
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(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + FOS

Figure 14: Tr1-2D: 4th
− order 25×25. t =

0.25 s.

(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + FOS

Figure 15: Tr1-2D: 8th
− order 12×12. t =

0.25 s.

40



(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + FOS

Figure 16: Tr1-2D: 4th
− order 50×50. t =

0.25 s.

(a) Filter

(b) VMS

(c) VMS + DC

(d) VMS + DC + FOS

Figure 17: Tr1-2D: 8th
− order 25×25. t =

0.25 s.
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(b) 8th
− order 25×25

Figure 18: Tr1-2D: Vertical slice at z = 0.0.
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Figure 19: Tr1-2D: detail of Figure 18. Region with undershoots. Vertical slice at z = 0.0.
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Tr2-2D. Linear advection of a 2D square wave along x in the periodic

domain Ω = [0, 1] × [0, 1]: the tracer is transported with velocity u =

(1/2, 0)ms−1 for one periodic revolution along x. The initial concentration

qh = 1 is centered at (xc, zc) = (0.5, 0.5) (Figure 20). The computational

finite domain consists of 11 × 11 quadrilaterals of order 11.

Figure 20: Tr2-2D: initial configuration of the pure advection problem.

As in the steady case, Figures 21-23 display improvement of the solution

in terms of monotonicity when the VMS method is used instead of the

filter. The combination of VMS and filtering is not recommended (result

not shown); although VMS alone controls the over- and under-shootings

along the streamlines, the addition of the filter at the end of every time step

degrades positivity in the neighborhood of large gradients.

In Figures 22 and 23 we present the streamline and crosswind sections

of the solution obtained by slicing the tracer along z = 0.5 and x = 0.5,

respectively. Unlike the previous problems characterized by internal and

boundary layers, for pure advection the VMS preserves the maximum and

minimum concentrations qh
max = 1, and qh

min = 0 and is free of spurious

oscillations. As a point of comparison, we present the result of classical
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artificial-viscosity in Figures 21-23d.

(a) Galerkin (b) Filter

(c) VMS (d) AV/HV ν = 0.001m2 s−1

Figure 21: Tr2-2D: Surface plot of the concentration field: ∆t = 0.001 s (except for HV:

∆t = 0.0002 s), 11×11 elements with 11th order polynomials. Results at t = 2.0 s (after

1 periodic revolution along x).
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Figure 22: Tr2-2D: Streamline cut at 0.5 m in the y-direction. ∆t = 0.001 s, 11×11

elements with 11th order polynomials. Results at t = 2 s (after 1 periodic revolution

along x). Solid line indicates the computed solution. The dashed line is the analytic

solution.
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Figure 23: Tr2-2D: Crosswind cut at 0.5 m in the x-direction. ∆t = 0.001 s, 11×11

elements with 11th order polynomials. Results at t = 2 s (after 1 periodic revolution

along x). Solid line indicates the computed solution. The dashed line is the analytic

solution.

Testing mass conservation. Because of the periodic boundary conditions

applied here, we compute mass conservation properties for this test. At

every time-step, the total mass loss of ρq (for ρ = 1) is computed as

Mloss(t) =
∫

Ω(ρq(t) − ρq(t0)) dΩ
∫

Ω ρq(t0) dΩ
, (33)

where Ω is the domain volume and t0 indicates the values at the initial
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time. Figure 24 shows the evolution of the mass loss that occurs during

100 revolutions around the periodic channel of Test Tr2-2D. 100 revolutions

happen in 100 s.
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Figure 24: Tr2-2D: evolution of the mass loss during 100 s, or 100 revolutions of the square

wave around the periodic channel of Figure 20.

Although in Figure 24 there seems to be an asymptotic trend to an up-

per bound, this is obtained at the expenses of accuracy during long runs.

Regardless of the type of equations (conservative or non-conservative), the

method here proposed is certainly unable to retain all mass. Because of

this, at this stage we can only think of applying this technique to short term

weather forecast but not climate. This is the first application of VMS and

DC to Spectral Elements to solve the advection equation; in the future we

will work on a fix to this problem for better (or total) mass conservation. A

first improvement of accuracy for long-time runs may be achieved using or-
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thogonal sub-grid scales (OSS) as proposed by [31]. Further analysis should

be done.

2D Smooth solid-body rotation. The smooth solid-body rotation test with a

smooth function is used for a grid convergence study [60, 61]. A Gaussian

hill qh = exp
[
−5
(
(x− xc)2 + (y − yc)2

)]
is originally centered in (xc, yc) =

(0, 0) in a periodic domain Ω = [−π, π] × [−π, π] with prescribed velocity

(u,w) = (−π y, π x). Convergence is computed after one full revolution

(t = 2 s). The normalized standard L2 error is computed with respect to

the exact solution qe = qh(x, y, t = 0) using Nel ∈ {102, 202, 402} and

polynomials of degree 4 and 8. Figure 25 shows the h−error. The original

data are reported in Table 2.
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Figure 25: 2D Smooth solid-body rotation: Log-log plots of the normalized L2 error vs.

Nel using VMS or a Filter.
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Table 2: 2D Smooth solid-body rotation: normalized L2 error vs. Nel. Convergence rate

of every setting is reported on the last row of the table.

Nel VMS 4th FILTER 4th VMS 8th FILTER 8th

100 0.7083E-02 0.1793E+00 0.3175E-05 0.2569E-03

400 0.3280E-03 0.2422E-01 0.2305E-07 0.4927E-05

1600 0.1982E-04 0.4127E-02 0.5473E-10 0.9388E-07

Convergence rate: 4.2406 2.7206 7.9120 5.7091

The experiment indicates that VMS does not affect the rate of con-

vergence of SEM. However, the time-discretization error is approximately

10−11; because of this, there is no gain in accuracy with further grid refine-

ment from 1600 to 6400 elements unless a more accurate time discretization

method is used.

Atmo-3D. The transport of a passive tracer in a neutrally stratified atmo-

sphere in a large domain represents an idealized application to a seemingly

real atmospheric problem. This final test is a proof-of-concept to verify the

behavior of the methodology over larger time and spatial scales that are of

relevance for real applications.

The velocity field is no longer uniform and constant, but varies non-linearly

in space and time during the evolution of a rising thermal perturbation orig-

inally centered at the central lower region of the domain. The difficulty of

the test is expressed by the transient character of the velocity that, in the

first instant of the motion, greatly affects the stability of the solution of

the advection equation. The problem is defined as follows [62]. The do-

main extends within Ω = [0, 1000] × [0, 1000] × [0, 1000]m3. It is divided

first into 10, and then into 20 spectral elements of order 4 along x and

z, with 1 element along y. The simulations final time is t = 600 s. A
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neutral background state at uniform potential temperature θ0 = 300K is

perturbed by a cylindrical thermal bubble of radius rc = 250m, centered in

(xc, yc, zc) = (500, 500, 350)m, and defined by

θ′ = A

[

1 + cos
(
rπ

rc

)]

, (34)

where r =
√

(x− xc)2 + (z − zc)2 and A = 0.5K. The top, bottom, left,

and right boundaries are modeled as non-penetrating solid walls, while pe-

riodicity is imposed on the front and back boundaries (y-direction).

The thermal problem is modeled by the Euler equations of inviscid com-

pressible flows and solved by the method described in [63]. The use of VMS

to solve the Euler equations falls beyond the scope of this paper, although

the authors are currently working at its implementation in the context of

spectral elements. Currently, VMS for the finite element solution of the

compressible Euler equations of dry nonhydrostatic stratified flows can be

found in [64].

At time t = 0 s, the tracer qh is centered in the same position of θ′, but

is described by a cylindrical step function of maximum intensity q′
hmax

= 0.5

within a radius r <= 250m. The initial state of qh and θ′ is shown in Figure

26. After 600 s the rising bubble has developed into the structure plotted

in Figure 27. If properly resolved, the tracer is expected to have similar

features given that the velocity field derives from the motion of the bubble.
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Figure 26: Atmo-3D: x− z-slice plot at y = 500m of the initial conditions of θ′ (left), and

qh (right).
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Figure 27: Atmo-3D: θ′ after 600 s. Grid: 20 × 20 elements of order 4.

The velocity field u is still until the warm bubble begins to move due

to buoyancy. As soon as u 6= 0, the tracer begins to move as well. The

sudden change of state from rest to moving generates oscillations at the

boundaries of the tracer that are more difficult to treat with respect to its

analogous steady-state case. Figure 28 shows the tracer after 600 s on a

grid of 10 × 10 elements of order 4. The filtered solution and the solution

obtained with artificial diffusion (Figures 28a, 28b) have important under
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and overshoots that propagate in the whole domain. The constant diffusivity

coefficient used with AV is taken as the average value of τ of VMS for the

same simulation. As expected from the previous tests, VMS alone is not

able to fully eliminate the oscillations in the proximity of the discontinuity,

however, improvement is evident (Figures 28c). The best performance is

obtained with the combination VMS+DC. Using the theoretical extreme

values for the tracer (0 ≤ qexact ≤ 0.5), the relative error

ǫ =
qh − qexact

qexact

is reported in Table 3. The same considerations apply for the finer-grid

solution (20 × 20 elements of order 4). The results are plotted in Figure 29

and the errors reported in Table 4.
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Figure 28: Atmo-3D: Tracer after 600 sec. Grid: 10 × 10 elements of order 4.
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Figure 29: Atmo-3D: Tracer after 600 sec. Grid: 20 × 20 elements of order 4.

Table 3: Atmo-3D: Relative error ǫ on the maximum (0.5) and minimum (0.0) theoretical

values. Results for 10 × 10 elements of order 4.

Method ǫmin ǫmax

AV/HV (ν = 0.001m2s−1) 76.89 % 105.37 %

AV/HV (ν = 0.1m2s−1) 61.79 % 45.00 %

Filter 51.05 % 53.53 %

VMS 33.67 % 36.21 %

VMS + DC 3.53 % 5.20 %
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Table 4: Atmo-3D: As for Table 3, but for 20 × 20 elements of order 4.

Method ǫmin ǫmax

AV/HV (ν = 0.001m2s−1) 65.26 % 62.59 %

AV/HV (ν = 0.1m2s−1) 20.33 % 21.06 %

Filter 36.38 % 53.10 %

VMS 14.34 % 11.53 %

VMS + DC 1.24 % 4.63 %

Remark 3: on the use of filters in the previous results In the

current work, filtering was applied in the usual way that has been used

previously in SE models (see, e.g., [44, 65, 66, 67]). That is, the filtering

coefficients were defined at the beginning of the simulation and applied af-

ter every time-step using the same filter matrix for all elements. It may be

possible to obtain better results with filters if they are constructed in a spe-

cific way (e.g., each element uses a different filter matrix that is constructed

dynamically) but a clear approach on how to do this remains an open topic

since this can be viewed as a classical limiter but for Spectral Elements (see,

e.g., [68]).

5. Discussion and conclusions

5.1. Conclusions

In this paper, we proposed the use of the Variational Multiscale Sta-

bilization (VMS) method to stabilize advection-dominated problems solved

with spectral elements. In the regions characterized by strong gradients,

we also combine VMS, a Discontinuity Capturing technique (DC), and the

First-Order Subcells method (FOS) for a better treatment of Gibbs phe-

nomena in the proximity of boundary and internal layers. The stabilization
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parameter τ that appears in the VMS scheme was computed to include the

characteristics of high-order spectral elements with (non-equispaced) LGL

nodes. Numerically, we demonstrated that this approach is a possible al-

ternative to the standard filters used in the stabilization of the spectral

element solvers if the suppression of unwanted under- and over-shoots is the

main concern. Stabilization by these methods is obtained by introducing

a diffusion-like term that is controlled and localized where the residual is

important (i.e. large gradients). Where needed, the combined action of

VMS and FOS yields encouraging results for high-order spectral elements.

The algorithms were evaluated on a set of standard tests of increasing dif-

ficulty. A significant improvement was observed in the performance of the

spectral element solver as far as the control of extrema is concerned, both

in the purely advective and in the advective-diffusive regimes. The most

important features of this new approach are the following:

• Unlike hyper-viscosity, the subgrid-scale diffusion is localized and con-

trolled.

• Under- and over-shoots are greatly suppressed relative to traditional

filters.

• The VMS method does not depend on a free-parameter assigned by the

user. On the other hand, in Algorithm 1 ε is a free-parameter related

to the simple error-estimator that was used. A more sophisticated

estimator should not depend on any user-defined constant.

• Currently, the method is not fully mass-conservative. This can be an

issue for long term simulations such as those for climate applications.

57



5.2. Application to atmospheric modeling in climate and weather prediction

In [57], a Kessler microphysics scheme was implemented within a spectral

element framework that requires the advection of three moisture variables

(vapor, cloud, and rain mixing ratios). This microphysics scheme will be im-

plemented in our Nonhydrostatic Unified Model for the Atmosphere (NUMA)

[63] in order to simulate both mesoscale and synoptic-scale atmospheric phe-

nomena. As is well-known, Galerkin-based methods yield 1) higher-order

accuracy and 2) excellent dispersion properties, which are both desirable for

advection schemes; however, the resulting Gibbs oscillations produce strong

gradients that must be remedied in some fashion. At present, a simple-

minded “fixer” is applied whereby negative values of the moisture variables

are set equal to zero. This fixer acts as an effective mass source, thus violat-

ing the conservation properties of the model. In addition, this fixer violates

the function space that the spectral element solution inhabits. For these rea-

sons, monotonic advection of tracer variables is essential for any atmospheric

model. The proposed VMS+DC+FOS technique is a candidate since it 1)

preserves monotonicity better than the standard filter approach, 2) does

not significantly increase the cost of the spatial discretization scheme, and

3) is completely local in nature (i.e., no additional communications are re-

quired in a parallel environment), which is necessary for scaling on modern

distributed and hierarchical memory environments. However, the method

should be improved for better mass conservation, especially when the time

scales at hand are large.
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Appendix A. Explicit expression for τ on high-order elements

In this appendix, we explicitly derive the expression for τ defined between

two consecutive LGL points [xlgl(i), xlgl(i+ 1)]. The bubble obtained from

the integration of (20) with boundary conditions b(xlgl(i)) = 0 and b(xlgl(i+

1)) = 0 has expression:

b(x) =
x

u
− x(i+ 1) − x(i)
u(eux(i+1)/ν − eux(i)/ν)

eux/ν − x(i)eux(i+1)/ν − x(i+ 1)eux(i)/ν

u(eux(i+1)/ν − eux(i)/ν)
.

The subscript LGL is omitted to keep the long expressions simple to read.

The evaluation of the integral (26) yields the expression:

τ
x(i+1)
x(i) =

1
x(i+ 1) − x(i)

[

x(i) − x(i+ 1)
u

(
ν

u
+
x(i+ 1) − x(i)

2

)

− eux(i+1)/ν(x(i) − x(i+ 1))2

eux(i)/ν − eux(i+1)/ν

]

.
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When x(i) = 0 and x(i+ 1) = h, we have that

τh
0 = − ν

u2
− h

2u
+

heuh/ν

euh/ν − 1
,

from which, with little algebra, expression (23) is recovered:

τ =
h

2u

(

coth(Pek) − 1
Pek

)

.
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